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R E S E A R C H R E P O R T

CPS-Rater: Automated Sequential Annotation for
Conversations in Collaborative Problem-Solving Activities

Jiangang Hao,1 Lei Chen,1 Michael Flor,1 Lei Liu,1 & Alina A. von Davier2

1 Educational Testing Service, Princeton, NJ
2 ACTNext, ACT Inc., Iowa City, IA

Conversations in collaborative problem-solving activities can be used to probe the collaboration skills of the team members. Annotating
the conversations into different collaboration skills by human raters is laborious and time consuming. In this report, we report our
work on developing an automated annotation system, CPS-rater, for conversational data from collaborative activities. The linear chain
conditional random field method is used to model the sequential dependencies between the turns of the conversations, and the resulting
automated annotation system outperforms those systems that do not model the sequential dependency.
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Collaboration is an essential 21st-century skill for both academic and career success (Griffin, McGaw, & Care, 2012;
Trilling & Fadel, 2009). In collaborative activities, team members’ verbal communications can be used to probe their
collaboration skills during the collaboration process. Annotating the communications with labels that reflect different
collaboration skills is the first step to analyzing the collaboration process quantitatively. For computer-supported collab-
orations, current technology allows three possible types of communications: audio, video, and text chat. Annotating any
types of these communication data is laborious, and an automated annotating system is highly desirable if one wants to
scale up the study or provide real-time facilitation based on the communications.

The collaboration skills can be identified from the semantic meaning of the communication data. Audio and video data
need to be transcribed into text before the annotation can be started.1 Automated annotation of texts is a well-studied
discipline in natural language processing (NLP). In the educational context, many automated annotations or scoring sys-
tems have been developed and applied to annotate essays, short constructed responses, dialog speech acts, and learning
forum messages (Burstein, Leacock, & Swartz, 2001; Gianfortoni, Adamson, & Rosé, 2011; Leacock & Chodorow, 2003;
Moldovan, Rus, & Graesser, 2011; Rosé et al., 2008). The basic working mechanism behind these automated annotation
systems involves a quantitative representation of the text and a mapping of this representation to the labels/scores either
via a simple linear regression or using more sophisticated machine learning methods (Chen, Fife, Bejar, & Rupp, 2016).
Most of these approaches treat each response as independent of the others, which is sufficient for most of the aforemen-
tioned applications. However, if there are sequential dependencies among the responses, such as the communications in a
collaborative activity, these methods will not be optimal, as they simply do not take advantage of the additional informa-
tion from the sequential correlation. Proper modeling of the sequential dependency can help to improve the annotation
accuracy for sequentially dependent responses. Multiple schemes have been suggested to leverage the sequential depen-
dency for automated annotation problems in different applications; a review of these methods can be found in Dietterich
(2002). On the basis of both theoretical and empirical comparison studies (Sutton & McCallum, 2012), it is suggested
that the current state-of-the-art framework for modeling sequential dependency is the conditional random field (CRF;
Lafferty, McCallum, & Pereira, 2001).2

Though CRF provides a general framework for modeling sequential dependencies, it does not spell out all the needed
elements for a specific application. For example, the feature functions (see the next section for details) in the CRF could be
optimized based on the particular properties of a specific application, and this optimization process is not directly trans-
ferable from one data set to another. Despite that CRF has a broad spectrum of applications in NLP, it has not been widely
used to classify collaboration skills from conversations in collaborative activities. The closest applications of this kind are
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Figure 1 Assessment instruments used in the ETS collaborative science assessment prototype.

the classification of the dialog acts from live chats and tutorial dialogues (S. N. Kim, Cavedon, & Baldwin, 2010; Rus,
Niraula, Maharjan, & Banjade, 2015) and the identification of the affects from human–human interactions (Siddiquie,
Khan, Divakaran, & Sawhney, 2013). The major reason for CRF not being widely used to annotate collaborative skills is
the lack of large-scale and annotated chat data from carefully controlled collaborative activities.

In this study, we applied CRF (more specifically, linear chain CRF) to model the sequential dependencies among chat
communications and developed an automated annotation system, CPS-rater. The data set used in this study is from a
large-scale online collaborative assessment prototype, the ETS collaborative science assessment prototype (ECSAP; Hao,
Liu, von Davier, & Kyllonen, 2015, 2017; Liu, Hao, von Davier, Kyllonen, & Zapata-Rivera, 2015). The collaborative task
in ECSCAP requires two participants to collaborate on a simulation-based task about volcanoes. Each team generated
about 80 turns of chat communication throughout the task. In our completed data collection, we collected data from
more than 500 dyadic teams, leading to a total of more than 40,000 lines of chat messages. Each turn of the conversations
was annotated by human raters based on a coding rubric for collaborative problem-solving (CPS) skills (Liu et al., 2015).
On the basis of this large annotated data set, Flor, Yoon, Hao, Liu, and von Davier (2016) have developed an automated
annotation system by treating each turn of the conversations as an independent response. The current study is a further
extension of the previous study in that it models the sequential dependency between the turns of conversations.

This report is organized as follows. We first introduce the chat data corpora and annotation. Then, we introduce
CPS-rater by outlining the CRF framework, and we detail our tweaks of the feature functions. Finally, we compare the
performance of CPS-rater with other nonsequential classification methods.

Data

ETS Collaborative Science Assessment Prototype

The ECSAP was developed to study the CPS skills in the domain of science. Figure 1 shows the five assessment instruments
used in the ECSAP. A detailed description of each instrument is beyond the scope of the current report; we invite the
interested reader to refer to Hao et al. (2017) for details. The collaborative conversations are the main data we are dealing
with in the current report, and they were produced when dyadic teams took the collaborative version of the simulation-
based task in the ECSAP. This simulation-based task was modified from an existing science assessment, Volcano Trialogue
(Zapata-Rivera et al., 2014), which was designed to assess individuals’ scientific inquiry skills. In the collaborative version,
we added a chat window to the simulation, through which two participants collaborate to solve a set of problems in volcano
science. A screenshot of the task is shown in Figure 2.

Data Collection and Annotation

We collected data through a crowdsourcing data collection platform, Amazon Mechanical Turk (Kittur, Chi, & Suh, 2008).
We recruited 1,000 participants with at least 1 year of college education and teamed them randomly into dyadic teams to
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Figure 2 Collaborative version of the simulation-based task used in the ETS collaborative science assessment prototype.

Figure 3 Distribution of number of turns of the conversations for each team.

take the collaborative version of the simulation task. After removing incomplete responses, we had complete responses
from 482 dyadic teams. The responses include both conversations around and responses to the questions. When consid-
ering only the conversations, the average number of turns for each team is 80, and the average time for each session is
71 minutes. A distribution of the number of turns is shown in Figure 3.

Each turn of the chat conversations was annotated based on a CPS framework developed for the domain of science
(Liu et al., 2015). The framework outlines four main categories of the CPS skills on which we would like to focus: sharing
ideas, negotiating ideas, regulating problem-solving activities, and maintaining communication. Each of these categories
has some subcategories, and the total number of subcategories amounts to 33.
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Figure 4 Average frequency of each category of collaborative problem-solving skills per team.

Two human raters were trained on the CPS framework and then double-coded a subset of the discourse data (16% of
the data). The unit of annotation was each turn of a conversation or each conversational utterance. All the coding was
done at the subcategory level. On the basis of these subcategory labels and their mapping to the four main categories, a
set of four-category labels were assigned later on. Given the fact that there are 33 categories in the initial annotation, it
took a while for the two raters to achieve “stable” annotations. We noticed that the first 17 sessions from the 482 dyadic
teams are less reliable and removed them from our final analysis. This left us with a total of 3,669 turns of conversation
being labeled by two raters. The agreement of the human annotation as measured by the unweighted kappa is .617 for all
33 subcategories and .675 for the four main categories. Given that many subcategories of the CPS skills rarely appear in
the conversations, we will stick to the four main categories of labels in this report. Figure 4 shows the average frequency
of each of the four categories of CPS skills per team. In Table 1, we show the snippets of the annotated data from two
different teams.

CPS-Rater

CRF provides a nice framework for modeling the dependency of sequential data. However, it is not necessarily an auto-
mated annotation system for conversations by itself. An additional set of wisdom on text preprocessing, feature selection,
and sequence optimization is needed to create an automated annotation system for conversations in a collaborative task.

Conditional Random Field Framework

The annotation problem we consider here is one particular type of the more general classification problem in machine
learning. Classifiers can be developed from both generative and discriminative perspectives. Generative models maximize
the joint probability of the labels and data, whereas discriminative models maximize the conditional probability of the
labels given the data. An example of the former is the naive Bayes classifier, and an example of the latter is the maximum
entropy classifier.3 As it is often difficult to model the probability of the data, discriminative models are generally more
preferred over generative models (Sutton & McCallum, 2012).

A nonsequential classifier for text classification learns the mapping between each turn of the texts and its corresponding
label and then applies the learned mapping to each turn of the new texts to predict the corresponding label. A sequential
classifier, on the other hand, treats all the texts and their labels in a sequence as a whole and learns the mapping between
all the turns of the texts and their labels together. It will apply the learned mapping to a sequence of new texts and predict
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Table 1 Examples of Annotated Data From Two Different Teams

Topic Chats Label Skill

First team
IntroduceYourselves Hello 3 Maintaining
IntroduceYourselves Hey 3 Maintaining
Question1A Chose b, cause its rocks cracking that cause the high frequency events 0 Sharing
Question1A Yes, same here 1 Negotiating
Question1B D sound right to you? 2 Regulating
Question1B I couldn’t remember, I thought it was C 2 Regulating
Question1B You are right 1 Negotiating
QuestionsP2 A and B? 2 Regulating
QuestionsP2 Yes, that’s what i got 1 Negotiating
QuestionsP3 52,431? 2 Regulating
QuestionsP3 I was only sure about 5 and 1 being first and last 0 Sharing
QuestionsP3 4 is probably second to last 0 Sharing
ExampleSeisQuestion1 A? 2 Regulating
ExampleSeisQuestion1 Picked a 0 Sharing
ExampleSeisQuestion2 Thoughts? 2 Regulating
ExampleSeisQuestion2 B? 2 Regulating
ExampleSeisQuestion2 Same 1 Negotiating
ExampleSeisQuestion3 Obviously c 0 Sharing
ExampleSeisQuestion3 C 0 Sharing

Second team
IntroduceYourselves Hi how are you? 3 Maintaining
IntroduceYourselves I am fine. How about yourself? 3 Maintaining
IntroduceYourselves Good glad to be able to work on this with you 3 Maintaining
IntroduceYourselves I feel the same way. 3 Maintaining
IntroduceYourselves I wonder what we will be doing. 2 Regulating
IntroduceYourselves I was just about to ask what should we do now click next? 2 Regulating
IntroduceYourselves I would wait a bit. 2 Regulating
IntroduceYourselves Some thing dealing with volcanos, pretty sure. 0 Sharing
IntroduceYourselves Tracking the I think 2 Regulating
IntroduceYourselves Yes. 1 Negotiating
IntroduceYourselves Have you ever seen a real volcano? 3 Maintaining
IntroduceYourselves Nope, but that would be fun. You? 3 Maintaining
IntroduceYourselves I saw Mt. St. Helens when I was younger. 3 Maintaining
IntroduceYourselves Nice! 3 Maintaining
IntroduceYourselves It was real pretty. 3 Maintaining
IntroduceYourselves I bet there a little scary to I think too. A good mix of fun too! 3 Maintaining
IntroduceYourselves Yes if you happen to live at the base of an active one. 1 Negotiating
IntroduceYourselves I seen this show where these people would chase active volcanos talk about living life 3 Maintaining

Note. The topic column indicates the specific items around which the conversations focus within the simulation-based task.

their labels all at once. When there are dependencies among the turns, such as in a conversation, a distinct advantage for
the sequential classifier is that it can make use of the dependency information to improve the accuracy of the annotation.

CRF provides a general framework for modeling the dependencies among the labels in a sequence from the discrimi-
native perspective. The formal definition of CRF is as follows (Lafferty et al., 2001).

Definition

Let G= (V , E) be a graph such that Y= (Yv)v∈V , so that Y is indexed by the vertices of G. Then (X,Y) is a CRF in the
case, when conditioned on X, the random variables Yv obey the Markov property with respect to the graph p(Yv|X, Yw,
w≠ v)= p(Yv|X, Yw, w∼ v), where w∼ v means that w and v are neighbors in G.

Let us denote each turn of the chat messages as xt and the corresponding CPS label as yt, where t runs from 1 to T,
with T as the length of the sequence. The xt here is not necessarily a single number but a representation of the text in that
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turn. If we further denote the sequence of {xt} and {yt} as x and y, a linear chain CRF is defined as

p
(

y|x) = 1
Z (x)

T∏
t=1

exp

( F∑
i=1

wifi
(

yt−1, yt, x, t
))

, (1)

where Z(x) is the normalization constant defined as

Z (x) =
∑

y

T∏
t=1

exp

( F∑
i=1

wifi
(

yt−1, yt, x, t
))

. (2)

The core part of Equation 1 is made of F feature functions, denoted as fi, and the weight of each feature function is
denoted as wi, where the integer i runs from 1 to F. The feature functions consist of the transition feature functions of
the entire observation sequence, denoted as hi(yt − 1, yt, x, t) for i running from 1 to M, and the state feature functions
of the label at position t and the observation sequence, denoted as si(yt, x, t) for i running from M to F. Here M is an
integer dependent on the choice of the features. A major assumption of the linear chain CRF is that only adjacent labels
will interact in the transition feature functions. Once the feature functions are set, the optimal labels corresponding to the
sequence can be obtained by maximizing the conditional probability function, Equation 1.

Sequential Dependency

As the real power of the sequential modeling lies in the additional information from the sequential dependency of the
data, we need to demonstrate that our data do show sequential dependency before we can be assured that the sequen-
tial modeling will help. Because only adjacent labels of the chats will be modeled in a linear chain CRF, we just need to
examine the dependency of the adjacent pairs of the CPS labels in our data. A straightforward way to do this is by com-
paring the frequency (probability) of the adjacent label pairs against the label pairs from a randomly shuffled label list.
We created 300 random realizations by shuffling the label list. Then we counted the consecutive pairs of the labels and
compared them to those calculated based on the real label sequence. The results are shown in Figure 5. Several skill pairs’
frequencies significantly deviate from the random realizations, which is an indication of sequential dependency among
certain combinations of labels. By properly modeling the dependency into an automated annotation system, we can, in
principle, improve the annotation accuracy.

Feature Functions

The core parts of a linear chain CRF classifier are the feature functions. The choice of the feature functions will directly
affect the performance of the classifier. As shown in the previous section, the feature functions consist of the transition
features hi(yt − 1, yt, x, t) and the state features si(yt, x, t). The former captures the sequential dependency of the labels, and
the latter captures the relationship between the labels and the data. In our experiment, we chose a set of simple transition
feature functions for the labels as the transition probabilities of the pairwise transitions from one label to another, that is,

hi
(

yt−1, yt, x, t
)
= PL(yt−1),L(yt), (3)

where L(yt) and L(yt − 1) refer to the label classes corresponding to yt and yt − 1, respectively. While for the state feature
function, we chose the indicator functions defined as

si
(

yt, x, t
)
=

{
1 if at position (t) , tokeni ∈ xt

0 otherwise,

where tokeni is from a list of tokens we developed based on the conversation texts. As the chat conversations are full of
slang words and irregular expressions, we first “regularize” all the texts using a contextually aware spell checker (Flor,
2012). For example, slang words and expressions such as “ya,” “yea,” “yeah,” “yiss,” “yisss,” “yep,” “yay,” “yaaaay,” and
“yupp” are normalized to “yes” by using a dictionary of slang terms (Flor et al., 2016). Though character-level n-gram
features can be used to address these irregular expressions, they will significantly increase the sparsity of the feature space;
therefore we chose to do the correction based on our established text checker. On the basis of the cleaned text, we further
selected a set of tokens, mostly words (unigram), word pairs (bigram), and some emotional symbols used in the chat, such
as “:)” and “:(,” all of which are considered to be informative, to reveal the CPS skills we defined.

6 ETS Research Report No. RR-17-58. © 2017 Educational Testing Service
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Figure 5 Comparison of the frequency of the consecutive pairs of labels between real data and the 300 realizations of the randomly
shuffled label list. The red dashed line is the mean of 300 realizations, and the red band encloses the 95% confidence interval. The
letters s, n, r, and m denote the four CPS skill categories sharing ideas, negotiating ideas, regulating problem solving, and maintaining
communications, respectively.

Table 2 Average Performance of Different Classifiers Based on Eight Random Split-Half Cross-Validations

Method Accuracy (%) Cohen’s kappa (unweighted)

Human–human 75.8 0.675
Baselinea 29.0 NA
Maximum entropy 66.9 0.551
Random forest 69.8 0.589
Naive Bayes 70.4 0.596
Linear SVM 71.9 0.619
Linear chain CRF 73.2 0.636

Notes. Each classifier is working under its optimal hyperparameters. For the classifiers other than linear chain conditional random field,
we use the unigram and bigram features from the text. CRF= conditional random field. SVM= support vector machine. aThe most
frequent category.

Performance Comparison

In this study, multiple machine learning classifiers have been used. On the basis of eight runs of random split-half Monte
Carlo cross-validation, the comparison of the performance is shown in Table 2. The linear chain CRF-based classifier
outperforms all other major nonsequential classifiers used in this study.

Discussion

We report herein a sequential automated annotation system for collaborative communications based on the linear chain
CRF CPS-rater. We applied it to the conversational chats generated from a collaborative task in the ECSAP. In our model,
we consider only the dependency from adjacent turns of conversations. Though this may not capture the longer range
dependency in the sequence, it already outperforms nonsequential methods, such as support vector machines. It is worth
noting that such a modeling scheme can potentially be applied to annotating general short constructed responses from
scenario-based tasks, where the responses to different items may be correlated.

ETS Research Report No. RR-17-58. © 2017 Educational Testing Service 7
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Though it is plausible to expect that modeling more complex dependency and choosing more sophisticated feature
functions may potentially further improve the performance, we also caution that overmodeling the dependency and
tweaking the feature functions may reduce the generalizability of the trained model based on our current data. In an
ongoing work, we explore other sequential modeling methods, including deep learning-based methods, and will report
the findings in the near future.

Notes

1 Note that the video and audio communication data can yield additional information, such as paralinguistic features or affects.
2 It is worth noting that the recent progress in deep learning, especially the combination of convolution neural network (CNN) and

recurrent neural network (RNN), has been shown to outperform most of the traditional approaches (which utilize
human-engineered feature representation and machine learning mapping) for a number of applications, such as speech
recognition, text annotation, and image tagging (Bertero & Fung, 2016; Y. Kim, 2014; Li & Wu, 2016; Shen & Lee, 2016; Wang
et al., 2016). However, the price for the increased predictive accuracy is the decreased interpretability of the feature
representation used in deep learning methods. Though this may be acceptable for many practical applications, it becomes very
challenging for applications in educational assessments where the interpretability of the scoring elements is needed and valued.

3 The maximum entropy classifier is generally referred to as multinomial logistic regression in the statistics community.
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